自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 资源 (18)
  • 论坛 (4)
  • 问答 (4)
  • 收藏
  • 关注

原创 听说你还在使用破解版Pycharm?

1 引言在用python做编码的过程中大多数人都会选择Pycharm来作为IDE使用,并且免费的教育版和社区版几乎就能满足满足绝大多数情况下的需求。但是,通常来说我们都需要快捷的将本地代码部署到服务器上进行实验,而连接服务器这一功能又恰好只对专业版开放。因此,对于专业版的破解就显得尤为必要。笔者之前也是一直使用破解版的Pycharm,最近一次配置破解文件大约还是在5月份的时候,并且破解成功后的过期时间显示为2099年。不过就在上个月突然失效了,导致在一个月的试用期后就无法使用了。此时笔者又开始在网上找破

2020-08-28 08:20:05 831

原创 Pytorch之Softmax多分类任务

在上一篇文章中,笔者介绍了什么是Softmax回归及其原理。因此在接下来的这篇文章中,我们就来开始动手实现一下Softmax回归,并且最后要完成利用Softmax模型对Fashion MINIST进行分类的任务。在开始实现Softmax之前,我们先来了解一下Fashion MINIST这一数据集。1 数据集1.1 FashionMNIST数据集FashionMNIST虽然名字里面有’MNIST’这个词,但是其与手写体识别一点关系也没有,仅仅只是因为FashionMNIST数据集在数据集规模、类别数量和

2020-08-25 13:12:50 665

原创 想明白多分类,必须得谈逻辑回归

1 引例在 《跟我一起机器学》 中,我们已经介绍了什么是逻辑回归回归。但是为了能更好的与深度学习相关内容进行衔接,在本篇文章中我们依旧是首先回顾一下逻辑回归,然后再一步步引入多分类直至过渡到深度神经网络的相关学习中。1.1 从逻辑回归说起我们都知道逻辑回归其实并不是一个回归任务,而是一个彻彻底底的分类任务。之所以当时被称之为回归其原因之一就是逻辑回归在最后预测的时候首先是输出一个[0,1][0,1][0,1]的连续值,然后我们再来人为的指定一个阈值进行分类。也就是,你还可以将逻辑回归先看成是一个回归任

2020-08-20 22:08:10 134

原创 Pytorch之Linear与MSELoss

在前面我们介绍了如何用Pytorch来实现一个两层的神经网络,但是其编码过程略微显得有点复杂。例如我们要手动自己定义权重参数,自己书写如何进行梯度更新等等。但要是某个网络多达几十层,那这个工作量显然是巨大的。因此,将一些常用的操作定义成更高级的API接口也是每个深度学习框架应该包含的东西。下面,在这篇文章中我们就介绍如何用Pytorch来简洁的实现多层全连接网络。1 数据集与网络结构数据集我们还是使用sklearn中的波士顿房价预测数据集,其每个样本包含有13个特征维度。因此我们神经网络的输入层就应该是

2020-08-12 22:20:12 267

原创 这样拟合正弦函数你会吗

为了加深大家对深度学习这一概念的理解,尤其是对深度(多层神经网络) 两个字的认识,笔者在本篇文章中将会通过一个拟合正弦函数例子再次介绍“深度”这一概念。但巧妇难为无米之炊,所以接下来笔者首先会以线性回归的实现为例,来简单介绍一下Pytorch;然后再来实现对正弦函数的拟合。1 动手实现线性回归1.1 深度学习框架在前面介绍《跟我一起深度学习》这个专栏时我们就说到后面会使用Pytorch这个框架来进行相应模型的实现,但并未解释到它是用来干什么的。并且如果是接触过深度学习的同学肯定知道深度学习的相关框架不

2020-08-06 20:17:16 326

原创 你告诉我什么是深度学习

1 引例经过前面在《跟我一起机器学习》中一系列的介绍,我们终于进入到了深度学习。那什么又是深度学习呢?以及我们为什么需要深度学习呢?要想弄清楚这两个问题,我们还得从机器学习的入门 线性回归 说起。如果之前一点没有接触过机器学习,并且也不打算研究机器学习,那么请至少阅读 《跟我一起机器学习》 中前三部分的内容,即线性回归、逻辑回归和模型的改善与泛化。1.1 房价预测在前面介绍线性回归的时候,我们首先举了这么一个例子:假设现在我们现在有一批房屋信息(面积、卧室数量等4个特征)与房价的数据集,现在我们需要用

2020-08-04 20:59:19 135

网络工程设计与系统集成(第三版)习题答案.pdf

网络工程设计与系统集成(第三版)习题答案.pdf 人民邮电出版社

2015-11-30

逻辑回归模型实例

逻辑回归模型实例

2017-07-01

gmp-4.1.4.tar.gz

gmp-4.1.4.tar.gz大数计算库

2015-12-12

test1.tar.gz

makefile Linux 下的Makefile(二)

2015-12-15

Understand-4.0.813-Linux-64bit.tar.gz

由于CSDN对上传文件大小的限制,所以放到了百度网盘里面。里面有分享链接和具体使用方法

2015-12-03

gmp用户手册

linux gmp原版英文用户手册gmp大数库

2015-12-20

binaryClassification

binaryClassification

2017-06-25

多变量的线性回归.zip

多变量的线性回归

2017-06-21

deeplearning

国外知名学者Michael Nielsen's所作笔记,Neural Network and Deep Learning;国外知名学者Michael Nielsen's所作笔记,Neural Network and Deep Learning

2017-09-10

斯坦福机器学习第一次练习

斯坦福机器学习第一次练习

2017-06-22

gmp库中文指导书

gmp库中文指导书,里面有安装方法,和基本的函数使用方法

2015-12-12

oneVariable.zip

线性回归模型实例

2017-06-21

斯坦福机器学习前三周概念总结.pdf

斯坦福机器学习前三周概念总结

2017-06-19

神经网络与深度学习

随着AlphaGo与李世石大战的落幕,人工智能成为话题焦点。AlphaGo背后的工作原理'深度学习'也跳入大众的视野。什么是深度学习,什么是神经网络,为何一段程序在精密的围棋大赛中可以大获全胜?人工智终将会取代人类智慧吗?, 本书结合日常生活中的寻常小事,生动形象地阐述了神经网络与深度学习的基本概念、原理和实践,案例丰富,深入浅出。对于正在进入人工智能时代的我们,这些内容无疑可以帮助我们更好地理解人工智能的原理,丰富我们对人类自身的认识,并启发我们对人机智能之争更深一层的思考与探索。, 《神经网络与深度学习》是一本介绍神经网络和深度学习算法基本原理及相关实例的书籍,它不是教科书,作者已尽量把公式减少到最少,以适应绝大部分人的阅读基础和知识储备。《神经网络与深度学习》涵盖了神经网络的研究历史、基础原理、深度学习中的自编码器、深度信念网络、卷积神经网络等,这些算法都已在很多行业发挥了价值。, 《神经网络与深度学习》适合有志于从事深度学习行业的,或想了解深度学习到底是什么的,或是有一定机器学习基础的朋友阅读。

2017-09-24

神经网络手写体识别

斯坦福机器学习第五章,课后练习,神经网络手写体识别,实例源码。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

2017-09-24

machine learning

machine learning

2017-07-09

斯坦福机器学习前三周概念总结

斯坦福机器学习前三周概念总结

2017-06-19

makefile模版

Linux 下的Makefile(二)makefile模版

2015-12-15

空字符的留言板

发表于 2020-01-02 最后回复 2020-02-01

C++ 检查输入变量是否为数值?

发表于 2015-11-10 最后回复 2019-08-24

csdn博客里面的数学公式怎么突然部分加载不出来

发表于 2017-07-09 最后回复 2017-08-15

求推荐c++程序开发宝典之类的书,用的是visual studio 2012

发表于 2014-12-21 最后回复 2015-11-10

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除