自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 资源 (18)
  • 论坛 (4)
  • 问答 (4)
  • 收藏
  • 关注

原创 Kmeans聚类算法求解与实现
原力计划

在上一篇文章中,笔者介绍了KmeansKmeansKmeans聚类算法的主要思想与原理,并且还得到了其对应的目标函数。在接下来的这篇文章中笔者就开始介绍KmeansKmeansKmeans聚类算法的求解过程,以及其对应的代码实现。跟我一起机器学习系列文章将首发于公众号:月来客栈,欢迎文末扫码关注!1 目标函数求解由上一篇文章的内容可知,KmeansKmeansKmeans聚类算法的目标函数如下所示:P(U,Z)=∑p=1k∑i=1nuip∑j=1m(xij−zpj)2(1)P(U,Z)=\sum_

2020-06-29 09:09:12 337

原创 没有你看不懂的Kmeans聚类算法
原力计划

1 引例经过前面一些列的介绍,我们已经接触到了多种回归和分类算法。并且这些算法有一个共同的特点,那就是它们都是有监督的(supervised)学习任务。接下来,笔者就开始向大家介绍一种无监督的(unsupervised) 经典机器学习算法——聚类。同时,由于笔者仅仅只是对Kmeans框架下的聚类算法较为熟悉,因此在后续的几篇文章中笔者将只会介绍Kmeans框架下的聚类算法,包括:Kmeans、Kmeans++和WKmeans。在正式介绍聚类之前我们先从感性上认识一下什么是聚类。聚类的核心思想就是将具有相

2020-06-23 09:08:38 464

原创 SVM之目标函数求解
原力计划

经过前面几篇文章的介绍,我们知道了支持向量机背后的原理。同时,为了求解SVM中的目标函数,我们还在前面两篇文章中陆续介绍了拉格朗日乘数法和对偶性问题。接下来,在这篇文章中将开始正式介绍SVM的求解过程。1 构造广义拉格朗日函数L(w,b,α)\mathcal{L}(w,b,\alpha)L(w,b,α)由 前文可知SVM最终的优化目标为:min⁡w,b12∣∣w∣∣2s.t.    y(i)(wTx(i)+b)≥1,i=1,2,...m(1)\begin{aligned}&\min_{w,

2020-06-20 09:21:18 267

原创 对偶性与KKT条件
原力计划

在**上一篇文章中,笔者介绍了什么是拉格朗日乘数法以及它的作用。同时在那篇文章中笔者还特意说到,拉格朗日乘数法只能用来求解等式约束条件下**的极值。但是当约束条件为不等式的时候我们又该如何求解呢?1 广义拉格朗日乘数法由拉格朗日乘数法可知,对于如下等式条件的约束问题min⁡w      f(w)s.t.      hi(w)=0,i=1,⋯ ,l.(1)\begin{aligned}\min_{w} \;\;\;f(w)&\\s.t. \;\;\;h_i(w)&=0,i=1, \

2020-06-18 09:37:17 244

原创 好久不见的拉格朗日乘数法
原力计划

1 引例我想大多数人对于朗格朗日乘数法的学习已经是好多年前的事情,其中的细节也自然是慢慢模糊了起来,但是对于它的作用我想几乎是不会忘记的,那就是用来求解条件极值。既然大多数人的记忆都停留在这个地方,那么我们就从这个开始重新拾起拉格朗日乘数法。下面就以一个例题来重温一下求解过程:求解目标函数z=xyz=xyz=xy在约束条件下x+y=1x+y=1x+y=1的条件极值。解:作拉格朗日函数F(x,y,λ)=xy+λ(x+y−1)(1)F(x,y,\lambda)=xy+\lambda(x+y-1)\ta

2020-06-18 09:33:20 189

原创 SVM之软间隔最大化
原力计划

跟我一起机器学习系列文章将首发于公众号:月来客栈,欢迎文末扫码关注!在前面几篇文章中,笔者分别介绍了什么是支持向量机以及如何通过sklearn来完成一个简单的SVM建模;接着还介绍了什么是线性不可分与核函数。在接下来的这篇文章中,笔者将继续介绍SVM中的软间隔与sklearn相关SVM模型的实现。1 什么是软间隔我们之前谈到过两种情况下的分类:一种是直接线性可分的;另外一种是通过ϕ(x)\phi(x)ϕ(x)映射到高维空间之后“线性可分”的。为什么后面这个“线性可分”要加上引号呢?这是因为在 上一篇文

2020-06-16 09:23:45 266

原创 SVM之线性不可分与核技巧
原力计划

跟我一起机器学习系列文章将首发于公众号:月来客栈,欢迎文末扫码关注!在前面两篇文章中,笔者通过两个角度来介绍了什么是支持向量机。不过说一千道一万,还是不如动手来做做。在本篇文章中,笔者将首先介绍如何通过sklearn来搭建相应的SVM分类模型,然后将接着介绍如何处理SVM中的线性不可分问题。1 SVM建模1.1 API介绍在sklearn中,我们通过from sklearn.svm import SVC这句代码就能够导入SVM分类模型了。有人可能会觉得奇怪,为什么导入的是一个叫SVC的东西?这是因为

2020-06-13 11:00:28 310

原创 从另一个角度看支持向量机
原力计划

跟我一起机器学习系列文章将首发于公众号:月来客栈,欢迎文末扫码关注!在上一篇文章中,笔者介绍了什么是支持向量机以及如何来建模对应的优化问题,且同时那也是一种主流的理解支持向量机的视角。下面,笔者再来从另外一个角度来介绍什么是支持向量机。这两种理解支持向量机的方法有着截然不同的切入点,因此可以一起阅读以便对支持向量机有着更好的理解。1 什么是支持向量机SVM的全称是Support Vector Machine,即支持向量机。SVM主要也是用于解决分类问题的一个算法模型,属于有监督学习算法的一种。同时,S

2020-06-11 08:18:04 183

原创 原来这就是支持向量机
原力计划

跟我一起机器学习系列文章将首发于公众号:月来客栈,欢迎文末扫码关注!在前面一系列的文章中,我们已经学习了多种分类算法模型,对于机器学习算是有了一定的了解。在接下来的几篇文章中,我们将开始逐步介绍《跟我一起机器学习》中的最后一个分类模型——支持向量机。**支持向量机(Support Vector Machine)**可以算得上是机器学习算法中最经典的模型之一。之所以称之为经典是因为其有着近乎完美的数学推导与证明,同时也正是因为这个原因,使得其求解过程有着很高的数学门槛。因此,对于接下来的内容,笔者也仅仅只会

2020-06-08 15:51:44 190

原创 泰坦尼克号沉船生还预测
原力计划

在前面的几篇文章中,笔者陆续介绍了几种决策树的生成算法以及常见的集成模型。接下来在这篇文章中,笔者将以泰坦尼克号生还预测(分类)为例来进行实战演示;并且还会介绍相关的数据预处理方法,例如缺失值填充和类型特征转换等。1 数据集预处理我们本次用到的数据集为泰坦尼克号生还预测数据集(公众号回复”数据集“即可获取),原始数据集一共包含891个样本,12个特征维度。但是需要注意的是,这12个特征维度不一定都会用到,我们只选择我们认为有用的就行;同时存在一些样本的某些特征维度出现缺失值的状况,因此我们需要对其进行填

2020-06-05 18:33:47 216 2

原创 随机森林在sklearn中的使用
原力计划

在上一篇文章中,笔者介绍了常见集成模型的主要思想,并且还提到随机森林是使用最为广泛的集成模型之一。因此在本篇文章中,笔者将会再次就随机森林的其它应用以及其在sklearn中的具体用法进行介绍。1 API介绍在上一篇文章中,我们介绍了随机森林的基本原理,但并没有对其的具体用法做出详细的示例。接下来,我们就对其在sklearn[1]中的具体用法进行介绍。打开sklearn中关于随机森林的定义可以发现:A random forest classifier.A random forest is a me

2020-06-04 10:19:37 312

原创 集成模型:Bagging、Boosting和Stacking
原力计划

跟我一起机器学习系列文章将首发于公众号:月来客栈,欢迎文末扫码关注!1 引例通过前面几篇文章的学习,我们已经了解了机器学习中的多种分类和回归模型。那现在有一个问题就是,哪一个模型最好呢?以分类任务为例,当我们拿到一个需要进行分类的任务时,如果是你你会选择哪种模型进行建模呢?一个狡猾的办法就是挨个都试一下,那这样做有没有道理呢?还别说,我们在实际的情况中真的可能会都去试一下,因为在没有实验之前谁都不会知道真正的结果。假如现在我们对A、C、D这三个模型进行建模,最后得到结果是:A的分类准确率为0.93,B的

2020-06-03 08:24:18 264

原创 决策树的生成与剪枝CART
原力计划

跟我一起机器学习系列文章将首发于公众号:月来客栈,欢迎文末扫码关注!在之前的一篇文章中,笔者分别介绍了用ID3和C4.5这两种算法来生成决策树。其中ID3算法每次用信息增益最大的特征来划分数据集,C4.5算法每次用信息增益比最大的特征来划分数据集。接下来,我们再来看另外一种采用基尼指数为标准的划分方法,CART算法。1 CART算法分类与回归算法(Classification and Regression Tree,CAR),即可以用于分类也可以用于回归,它是应用最为广泛的决策树学习方法之一。CART

2020-06-02 08:27:27 274

网络工程设计与系统集成(第三版)习题答案.pdf

网络工程设计与系统集成(第三版)习题答案.pdf 人民邮电出版社

2015-11-30

逻辑回归模型实例

逻辑回归模型实例

2017-07-01

gmp-4.1.4.tar.gz

gmp-4.1.4.tar.gz大数计算库

2015-12-12

test1.tar.gz

makefile Linux 下的Makefile(二)

2015-12-15

Understand-4.0.813-Linux-64bit.tar.gz

由于CSDN对上传文件大小的限制,所以放到了百度网盘里面。里面有分享链接和具体使用方法

2015-12-03

gmp用户手册

linux gmp原版英文用户手册gmp大数库

2015-12-20

binaryClassification

binaryClassification

2017-06-25

多变量的线性回归.zip

多变量的线性回归

2017-06-21

deeplearning

国外知名学者Michael Nielsen's所作笔记,Neural Network and Deep Learning;国外知名学者Michael Nielsen's所作笔记,Neural Network and Deep Learning

2017-09-10

斯坦福机器学习第一次练习

斯坦福机器学习第一次练习

2017-06-22

gmp库中文指导书

gmp库中文指导书,里面有安装方法,和基本的函数使用方法

2015-12-12

oneVariable.zip

线性回归模型实例

2017-06-21

斯坦福机器学习前三周概念总结.pdf

斯坦福机器学习前三周概念总结

2017-06-19

神经网络与深度学习

随着AlphaGo与李世石大战的落幕,人工智能成为话题焦点。AlphaGo背后的工作原理'深度学习'也跳入大众的视野。什么是深度学习,什么是神经网络,为何一段程序在精密的围棋大赛中可以大获全胜?人工智终将会取代人类智慧吗?, 本书结合日常生活中的寻常小事,生动形象地阐述了神经网络与深度学习的基本概念、原理和实践,案例丰富,深入浅出。对于正在进入人工智能时代的我们,这些内容无疑可以帮助我们更好地理解人工智能的原理,丰富我们对人类自身的认识,并启发我们对人机智能之争更深一层的思考与探索。, 《神经网络与深度学习》是一本介绍神经网络和深度学习算法基本原理及相关实例的书籍,它不是教科书,作者已尽量把公式减少到最少,以适应绝大部分人的阅读基础和知识储备。《神经网络与深度学习》涵盖了神经网络的研究历史、基础原理、深度学习中的自编码器、深度信念网络、卷积神经网络等,这些算法都已在很多行业发挥了价值。, 《神经网络与深度学习》适合有志于从事深度学习行业的,或想了解深度学习到底是什么的,或是有一定机器学习基础的朋友阅读。

2017-09-24

神经网络手写体识别

斯坦福机器学习第五章,课后练习,神经网络手写体识别,实例源码。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

2017-09-24

machine learning

machine learning

2017-07-09

斯坦福机器学习前三周概念总结

斯坦福机器学习前三周概念总结

2017-06-19

makefile模版

Linux 下的Makefile(二)makefile模版

2015-12-15

空字符的留言板

发表于 2020-01-02 最后回复 2020-02-01

C++ 检查输入变量是否为数值?

发表于 2015-11-10 最后回复 2019-08-24

csdn博客里面的数学公式怎么突然部分加载不出来

发表于 2017-07-09 最后回复 2017-08-15

求推荐c++程序开发宝典之类的书,用的是visual studio 2012

发表于 2014-12-21 最后回复 2015-11-10

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除