- 博客(9)
- 资源 (18)
- 论坛 (4)
- 问答 (4)
- 收藏
- 关注
原创 决策树——(二)决策树的生成与剪枝ID3,C4.5
1.基本概念在正式介绍决策树的生成算法前,我们先将之前的几个概念梳理一下:1.1 信息熵设XX是一个取有限个值的离散型随机变量,其分布概率为 P(X=xi)=pi,i=1,2,...,nP(X=x_i)=p_i,i=1,2,...,n则随机变量XX的熵定义为 H(X)=−∑i=1npilogpi(1.1)H(X)=-\sum_{i=1}^np_i\log{p_i}\tag{1.1}其中,若pi=
2017-12-27 20:02:07
1353
原创 决策树——(一)决策树的思想
本篇文章主要先从宏观上介绍一下什么是决策树,以及决策树构建的核心思想。1. 引例关于什么是决策树(decision tree),我们先来看这么一个例子。假如我错过了看世界杯,赛后我问一个知道比赛结果的人“哪支球队是冠军”?他不愿意直接告诉我,而让我猜,并且每猜一次,他要收一元钱才肯告诉我是否猜对了,那么我要掏多少钱才能知道谁是冠军呢?我可以把球队编上号,从1到16,然后提问:“冠军球队在1-8号中吗
2017-12-26 21:32:27
1272
原创 文本处理之贝叶斯垃圾邮件分类
本文所讲解的是如何通过Python将文本读取,并且将每一个文本生成对应的词向量并返回. 文章的背景是将50封邮件(包含25封正常邮件,25封垃圾邮件)通过贝叶斯算法对其进行分类.主要分为如下几个部分: ①读取所有邮件; ②建立词汇表; ③生成没封邮件对应的词向量(词集模型); ④用sklearn中的朴素贝叶斯算法进行分类; ⑤生成性能评估报告1.函数介绍下面先介绍需要用到的功能函数1.1建
2017-12-17 19:43:43
2281
2
原创 Scikit-learn——Naive Bayes
本文主要介绍sklearn中关于朴素贝叶斯模型的用法,其中主要包含以下两类模型:离散型:所有维度的特征都是离散型的随机变量连续型:所有维度的特征都是连续型的随机变量1.sklearn.naive_bayes.MultinomialNB多项式朴素贝叶斯(Multinomial Naive Bayes),即所有特征都是离散型的随机变量(例如在做文本分类时所使用的词向量就是离散型的).在sklear
2017-12-17 19:38:51
3245
原创 朴素贝叶斯算法与贝叶斯估计
在看贝叶斯算法的相关内容时,你一定被突如其来的数学概念搞得头昏脑涨。比如极大似然估计(Maximum likelihood estimation ),极大后验概率估计(Maximum a posteriori estimation),先验概率(Prior probability),后验概率(Posteriori probability)等。所以后面我就本着先学会用,再谈概念的路线来进行。1. 朴素贝
2017-12-14 21:11:09
3189
2
原创 Logistic回归代价函数的数学推导及实现
logistic回归的代价函数形式如下: J(θ)=−1m[∑i=1my(i)loghθ(x(i))+(1−y(i))log(1−hθ(x(i)))]J(\theta) = -\frac{1}{m}\left[\sum_{i=1}^{m}y^{(i)}\log h_\theta(x^{(i)}) + (1 - y^{(i)})\log (1 - h_\theta(x^{(i)}))\right]可
2017-12-09 20:53:49
2640
4
原创 带你重拾概率论
声明:本文所有内容均来自笔者在学习中所做总结,难免会有错误,谨慎参考;本文所有内容的整理逻辑以及应用范围均只局限于机器学习相关内容,请勿延伸至其他领域;本文内容会不定期更新,总结,修改,排版,仅根据笔者所遇到的问题进行相关部分的完善;若发现错误,还望不吝赐教(留言,邮箱均可);文章内容可转载,但请注明出处;一、参数估计所谓参数估计(Parameter estimation)指的是:用已知
2017-12-09 16:13:36
654
原创 两个角度带你吃透PCA
关于(Principal Component Analysis)的推导方法很多,Ng在CS229的课程中也说到大约有10种左右;本文介绍的就是他在课程中讲到的,基于最大化方差的推导方法。1. What is PCAPCA是主成成分分析(Principal Component Analysis)的简写,属于线性降维方法中的一种;其目的是对包含冗余的数据集进行降维等。所谓线性降维是指这种方法仅仅对于各维
2017-12-02 11:30:22
752
原创 带你重拾线性代数
声明:本文所有内容均来自笔者在学习中所做总结,难免会有错误,谨慎参考;本文所有内容的整理逻辑以及应用范围均只局限于机器学习相关内容,请勿延伸至其他领域;本文内容会不定期更新,总结,修改,排版,仅根据笔者所遇到的问题进行相关部分的完善;若发现错误,还望不吝赐教(留言,邮箱均可);文章内容可转载,但请注明出处;说明:文中所有涉及到的矩阵,若未做特殊说明均为方阵一、向量的表示方法1.1 引
2017-12-02 11:06:35
266
deeplearning
2017-09-10
神经网络与深度学习
2017-09-24
空字符的留言板
发表于 2020-01-02 最后回复 2020-02-01
C++ 检查输入变量是否为数值?
发表于 2015-11-10 最后回复 2019-08-24
csdn博客里面的数学公式怎么突然部分加载不出来
发表于 2017-07-09 最后回复 2017-08-15
求推荐c++程序开发宝典之类的书,用的是visual studio 2012
发表于 2014-12-21 最后回复 2015-11-10
Dell inspiron 15r 5537安装Ubuntu 开机提示低显卡模式?
2015-06-05
Linux 中,普通用户获得临时root 之后,是否和超级用户一样?
2015-06-04
C语言关于char分配内存的问题
2015-06-04
C++中,定义的数组怎么由输入来确定维度
2014-12-03
TA创建的收藏夹 TA关注的收藏夹
TA关注的人 TA的粉丝